Epigenetics and Ethics: Rights and consequences


by Dr. Shea K. Robison

(Originally posted on the Oneness Hypothesis blog, as part of my work as a postdoctoral research fellow with the Center for East Asian and Comparative Philosophy at the City University of Hong Kong)

Epigenetics: Science, ethics and politics

In part I, I introduced two aspects of epigenetics revealed by recent research: the enhanced gene-level responsiveness of the epigenome, and the non-genetic inheritance of many of these epigenetic modifications. These two aspects of epigenetics highlight different but related implications for conventional Western philosophy and science. Through these implications, epigenetics provides a unique opening for the concept of Oneness to be taken seriously within both Western science and philosophy.

In part I, I also discussed the recent emergence of epigenetics in the context of the guiding model of my project:


This model depicts the necessary relationships between the understanding of biology prevalent in a society, the prevailing ethics, and the prevailing politics, all of which revolve around the prevailing concept of self. The intuition behind this model is straightforward: That in the long run an understanding of biology will cohere with a certain ethos and a politics which reflects that ethos, and vice versa, and that any conflicts which arise between a biology, an ethics and a politics will be resolved to some kind of dynamic equilibrium.

Epigenetics and the environment

In the context of this model, an important question is whether epigenetics introduces anything new on a scientific level. If epigenetics does introduce scientific novelties to the conventional understanding of biology, then according to the model it also has equally significant ethical and political implications.

One common critique of the recent surge of interest in epigenetics, though, is that the responsiveness of the epigenome to the environment revealed by this research is nothing new, and is not disruptive of the underlying science of genetics and its basic assumptions. In a sense this critique is technically true—if anything, epigenetics merely helps to fill in the conventional picture of gene-environment interactions. However, this does not mean that this aspect of epigenetics does not still present substantial challenges to conventional Western ethical and philosophical frameworks which may be better addressed from a Oneness perspective. (Not to mention that, per my model, the significance of these ethical and political challenges also strongly suggests that this responsiveness to the environment revealed by epigenetics poses more significant scientific challenges than it is often given credit for.)

Epigenetics and inheritance

On the other hand, the inheritance of epigenetic effects, demonstrated in some cases through four and five generations, does present fundamental challenges for both modern liberal science and philosophy. For example, a primary foundational assumption of both modern genetics and modern liberalism is that all people are born free and equal, independent of any undue influence from the environments or experiences of their parents (called ‘reprogramming’ during embryogenesis in genetics, and a self-evident truth in the Declaration of Independence, with intellectual roots which go back much further than that).

However, the evidence emerging from epigenetics suggests this is not the case. Instead of individuals of each generation being born with a pristine copy of their biological essence, they are inheriting a genetic endowment riddled with markers of the experiences of their parents and grandparents and great-grandparents, and so on. And these inherited epigenetic markers, as more and more research is showing, are having direct effects on the physical and mental health of individuals from causes not actually experienced by these individuals.

In this context in particular, per my guiding model, epigenetics does present equally fundamental scientific and philosophical challenges. In both cases, though, my contention is that these challenges are answered most effectively through a Oneness perspective which is relatively novel–though not unheard of–in Western thought. One good way to demonstrate the depth of the philosophical challenges of epigenetics is through discussion of its implications for two of the most predominant approaches to ethics in modern liberalism: rights theories and consequentialism.


A simple definition of rights is as moral claims for the protection of certain inherent properties or latent possibilities for individuals within a particular category (i.e., humans, animals, children, corporations, etc.), differentiated by mutual limitations (e.g., ‘The right to swing my arm ends where the other man’s nose begins’[1]).

Per the guiding model of my project, as discussed in more detail in part I and here, there is no fundamental conflict between the science of genetics and rights-based ethics and politics because they are all premised upon the same basic assumptions, having evolved out of the same intellectual and cultural history. However, as epigenetics complicates the science of genetics by challenging or dissolving its presumptive physical boundaries, epigenetics likewise complicates the metaphysical distinctions and exclusions which constitute the individual self as the receptacle and bearer of rights.

For example, research in epigenetics shows that the choices and experiences of individuals in one generation are conditioning the basic nature of individuals of subsequent generations, which indelibly affects how those new individuals will exercise their own rights. What, then, is the appropriate boundary between where one individual begins and another ends? At what point do the choices of one individual become, in effect, the choices of another? And who is to be held responsible for protecting or ensuring whose rights? Further, by so conditioning the basic nature of other individuals, individuals in effect constitute the environments of each other. If individuals do indeed come to function as the environments of others, at what point do individuals have and then lose their rights as individuals? And what are the rights of these individuals-as-environments, if such a thing is even conceivable? Again, under the paradigm of conventional genetics, these kinds of issues were simply not possible in a physical sense, which is why it dovetails so well with the concept of individual rights, which depends upon the same kinds of exclusions.

In the context of rights, though, how is the line to be drawn between the rights of life, liberty and pursuit of happiness of individuals in one generation versus the rights of individuals of subsequent generations to be created equal so as to exercise their own rights to life, liberty and the pursuit of happiness? At what point can the rights of currently existing individuals be justly curtailed to protect the rights of individuals who do not as yet even exist (for example, if you are a 12 year old girl who may or may not become a mother, at what point is the state justified in taking away your right to choose to eat certain foods that are not harmful to you but which have been shown to be harmful to the normal development of your grandchildren)? What takes precedence (and why): a right being exercised in the present, or a right which might be potentially exercised in the future? And so on.

As a demonstration of the inherent difficulties in drawing these kinds of distinctions even before consideration of the science of epigenetics, the notion of intergenerational justice is already a source of fundamental disagreements within the rights tradition, in particular whether the concept of welfare rights for future others can even be made sense of with the principles and arguments available to rights theorists[2]. Notably, most of these disputes within the rights tradition revolve around the complications which result from the prevailing hyper-individualistic concept of personhood at the core of both rights theory and modern liberal philosophy[3].

These challenges from epigenetics may well be resolvable from within rights theories, but what is clear is that the empirical knowledge emerging from epigenetics emphasizes foundational schisms within rights theories which as yet have not been resolved. As such, one way to address these philosophical conflicts from the new empirical challenges introduced by epigenetics would be through an ethical framework capable of justifying the same kinds of concerns as the concept of rights, but which is not ontologically committed to atomistic individuals as the repositories of mutually exclusive rights. As will be discussed in subsequent posts, concepts of Oneness—as have been developed by philosophers of both East Asia and the modern liberal West—have the potential to both reconcile many of these fundamental contradictions and to incorporate the new knowledge emerging from epigenetics.


What about other approaches within the modern liberal tradition which do not rely upon the notion of individual rights, such as the ostensibly agent-neutral ethical theories of consequentialism or utilitarianism? According to these approaches, as indicated by the names, ethical obligations are most justly defined through the identification of consequences or the maximization of overall utility. The enduring appeal of these orientations, as paraphrased by Phillipa Foot, rests in the seemingly unobjectionable belief in “the most good for the most people”[4]. Without a focus on the individual as such, these orientations could provide a way around the ethical problems introduced by epigenetics just discussed. However, epigenetics has much different, though equally profound, implications for these kinds of ethical theories as well.

First, beyond the difficulties with truly neutralizing individuals-as-agents within consequentialist perspectives which have already been raised[5], the introduction of epigenetics raises the implications of these outcome-based ethics to the level of the grotesque through the identification of the causal pathways for both epigenetic responsiveness and transgenerational epigenetic inheritance, thereby expanding the scope of knowable consequences—and therefore of ethical obligation—beyond what is actionable or even conceivable.

For example, explanations for different versions of consequentialist ethics usually involve contrasting the consequences for the few and the many from the commission of morally dubious actions (e.g., is the brutal torture of one person justified if it will save five, or 500 or 5,000 people?). Epigenetics reveals the enhanced susceptibilities to cancers, or heart disease, or schizophrenia, or depression from different environmental exposures which–to the degree the science behind epigenetics is valid–would have direct causal implications for millions or hundreds of millions (billions?) of living people. Now add to this tally the as yet unrealized consequences of millions to billions of future people who will suffer similar effects from causes to which they were not actually exposed through no fault of their own. Given the numerical scale of these circumstances, and the incremental or probabilistic nature of their realization, what is the appropriate moral calculus or rule for weighing these kinds of individual and multi-generational consequences against each other? Particularly as these consequences are not being raised in hypothetical scenarios but are being revealed through rigorously scientific processes?

Likewise, in the circumstances revealed by epigenetics there are not necessarily any morally dubious choices producing the consequences described in the previous paragraph. Rather, for the most part these consequences—not only for the actual living people but for the unborn generations in the future—are being both realized and produced by people in the conduct of their everyday lives. However, in identifying the causal pathways for these consequences, epigenetics is also providing the knowledge to potentially avoid these consequences. In other words, the research in epigenetics is both describing morally consequential outcomes for practically everyone in some way as a result of mere existence and at the same time making us morally responsible for rectifying these consequences. Again, according to our conventional assessments, what could possibly be the appropriate moral calculus or rule which can justly balance this practically universal dispersion of consequences and responsibility?

Epigenetics, ethics, and Oneness

Thus, epigenetics poses fundamental complications for even the supposedly agent-neutral ethical theories of modern liberalism. As with rights theories, these challenges may well be answerable from within consequentialism or utilitarianism–but have notably not yet been resolved as such. Regardless, in both cases, what is clear is that the new empirical knowledge from epigenetics emphasizes longstanding fractures in both ethical approaches which have not yet been resolved.

This brief sketch of the fundamental challenges epigenetics poses to two of the most dominant ethical frameworks of modern liberalism is a good indication of the scope of the implications of epigenetics for modern liberalism in general, not only for the ethics, but also the politics and the jurisprudence of contemporary liberalism built on these same principles. As such, as will be discussed in subsequent posts, concepts of Oneness as have been developed by philosophers in both the East and West could provide the means to reconcile many of these fundamental contradictions, providing more appropriate ethical and political frameworks for the incorporation of the new knowledge emerging from epigenetics.

Senses and Values of Oneness

What do you think? I am curious to hear your thoughts. Leave your comments below and I will respond.

Also, if you find these thoughts I’ve shared interesting and worthwhile, Like this post, Reblog it, or Tweet about it using the buttons below.

[1] Chafee, Z. (1919) “Freedom of Speech in Wartime” Harvard Law Review 32(8): 932-973.

[2] “Intergenerational Justice”, The Stanford Encyclopedia of Philosophy

[3] “The Nonidentity Problem”, The Stanford Encyclopedia of Philosophy

[4] Foot, P. (1985). Utilitarianism and the Virtues. Mind, 196-209.

[5] Broome, John. (1991). Weighing Goods (Oxford: Blackwell); Griffin, J. (1992). The human good and the ambitions of consequentialism. Social philosophy and Policy, 9(02), 118-132; Hooker, B. (1994). Is rule-consequentialism a rubber duck? Analysis, 54(2), 92-97; Howard-Snyder, F. (1993). Rule Consequentialism is a Rubber Duck. American Philosophical Quarterly, 271-278.


Epigenetics and Oneness: What is epigenetics and what is Oneness?


by Dr. Shea K. Robison (@EpigeneticsGuy)

(Originally posted on the Oneness Hypothesis blog, as part of my work as a postdoctoral research fellow with the Center for East Asian and Comparative Philosophy at the City University of Hong Kong)

Genetics, as the study of genes and heredity, is the predominant scientific account in contemporary society of the origins of life and its development. While the basic assumptions of the science of genetics are widely known and accepted, what is much less known or even recognized are the ethical and political commitments of the science of genetics.

As I discuss extensively on my site The Nexus of Epigenetics, these ethical and political commitments of the science of genetics are exposed by the recent emergence of epigenetics. In turn, the science of epigenetics provides a unique opening for the concept of Oneness, or that all things are inextricably intertwined with, part of, or in some sense identical with each other. The concept of Oneness is most associated with East Asian philosophies such as Daoism, Buddhism, Confucianism and Hinduism, but via epigenetics Oneness has the potential to make significant contributions to both the scientific practice of genetics and more philosophical discussions of our understanding of our place in the world and of our relationships with each other and our environments from the perspective of genetics.

Senses and Values of Oneness

The Model

As shown in the guiding model of my project, there is a necessary relationship between the understanding of biology prevalent in a society, the prevailing concept of self, the prevailing ethics, and the prevailing politics:


Each vertex in this model is in constant tension with the other vertices. As one of the vertices in this network of relationships changes, so also must the other vertices change, and in commensurate ways (The intuition behind this model is straightforward: That in the long run the prevailing understanding of biology in a society will not fundamentally conflict with the prevailing conceptions of ethics or politics, and vice versa). As such, the prevailing scientific assumptions of genetics—as the predominant biological scientific explanation of the era—are necessarily coextensive with the prevailing ethics and politics of contemporary Western society, all of which revolve around the prevailing concept of self, which in this case is of individuals as atomistic and autonomous entities. (For more background on the development of the modern liberal individual in relation to the development of the science of genetics, read this and this and this.)


In this context, the recent emergence of the science of epigenetics—if, in fact, epigenetics does present a new understanding of biology—should also pose significant ethical and political challenges commensurate with its scientific challenges.


As I will show in this series of posts, epigenetics does introduce new knowledge of biology, and therefore introduces novel ethical and political challenges as well. As I will also show, these ethical and political challenges from epigenetics provide unique connections between cutting-edge Western life science and the concept of Oneness most often associated with East Asian philosophy, and actually back again to some of the often overlooked nooks and crannies of Western philosophy. Understanding the necessity of these connections, though, requires laying some important groundwork.

What is epigenetics?

Epigenetics refers to those biological mechanisms ‘above’ the genes which influence and regulate the expression of the genes but without a modification of the underlying gene sequences [watch this video from the University of Utah for a good visual introduction of the basics of epigenetics]. In a technical sense the study of epigenetics is thus perhaps best understood as a subfield of genetics, but the results from the research in epigenetics—and the tangled social and political history of epigenetics relative to genetics—complicate this classification.

Research in epigenetics involving both animals and humans has shown the epi-genome to be quite responsive to the environment, and also that many epigenetic modifications are being passed on to subsequent generations but not via changes in genetic sequence as required by the prevailing model of genetics. The influences from the environment which are manifesting as epigenetic modifications include exposure to specific chemicals[1], food choices[2], quality of maternal care[3], and even stress[4], just to name a few. Some of the effects of these epigenetic modifications in both current and subsequent generations are being identified as both physical maladies such as cancers[5], heart disease[6], and obesity[7], and mental disorders such as schizophrenia[8] and autism[9], again to name just a few of the effects. [For more on the science of epigenetics, read my research summaries of recent papers on epigenetics here.]

So what?

In other words, the scientific research on epigenetics is showing not only our direct physical connections to our environments, and our environments to us, but also that subsequent generations can manifest the effects of these environmental exposures without being exposed to these original causes. In a way, epigenetics, and epigenetic inheritance in particular, introduce ontological complications similar to those of the “spooky action at a distance” of quantum mechanics[10]. However, per the guiding model of my project, as epigenetics poses legitimate challenges to our understanding of our biology it thereby poses even more immediate and direct challenges to our prevailing ethics and politics than similar challenges in other fields such as physics.

This new knowledge emerging from epigenetics not only introduces significant challenges to conventional understandings of gene-environment interactions, but also exacerbates many of the longstanding and unresolved fractures in modern liberal ethics. The complications from epigenetics for conventional liberal ethical perspectives such as rights theories and consequentialism will be discussed in another post, as well as some of the ways the concept of Oneness is uniquely equipped to address these challenges from epigenetics in ways that modern liberal ethical theories, with their ontological commitments to individualism, are not.

Senses and Values of Oneness

Likewise, per the guiding model of my project, this also suggests that the concept of Oneness could be uniquely equipped to address these challenges from epigenetics in ways that modern liberalism is not. The potential utility of the concept of Oneness for scientific practice will also be the subject of subsequent posts as I continue to develop these ideas.

What do you think? I am curious to hear your thoughts. Leave your comments below and I will respond.

Also, if you find these thoughts I’ve shared interesting and worthwhile, Like this post, Reblog it, or Tweet about it using the buttons below.

[1] Manikkam, M., Tracey, R., Guerrero-Bosagna, C., & Skinner, M. K. (2013). Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and spermepimutations. PLoS One, 8(1), e55387; Manikkam, M., Haque, M. M., Guerrero-Bosagna, C., Nilsson, E. E., & Skinner, M. K. (2014). Pesticide methoxychlor promotes the epigenetic transgenerational inheritance of adult-onset disease through the female germline. PloS one, 9(7), e102091.

[2] Jackson, F. L., Niculescu, M. D., & Jackson, R. T. (2013). Conceptual shifts needed to understand the dynamic interactions of genes, environment, epigenetics, social processes, and behavioral choices. American journal of public health, 103(S1), S33-S42; Ng, S. F., Lin, R. C., Laybutt, D. R., Barres, R., Owens, J. A., & Morris, M. J. (2010). Chronic high-fat diet in fathers programs [bgr]-cell dysfunction in female rat offspring. Nature, 467(7318), 963-966; Paul, B., Barnes, S., Demark-Wahnefried, W., Morrow, C., Salvador, C., Skibola, C., & Tollefsbol, T. O. (2015). Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clinical epigenetics, 7.

[3] Weaver, I. C., Szyf, M., & Meaney, M. J. (2002). From maternal care to gene expression: DNA methylation and the maternal programming of stress responses. Endocrine research, 28(4), 699-699; Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, DymovS, Szyf M, Meaney MJ. (2004). Epigenetic programming by maternal behavior. Nat Neurosci, 8:847–854.

[4] Heim, C., & Binder, E. B. (2012). Current research trends in early life stress and depression: Review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Experimental neurology, 233(1), 102-111; Hodes, G. E. (2013). Sex, stress, and epigenetics: regulation of behavior in animal models of mood disorders. Biol Sex Differ, 4(1), 1; Nestler, E. J. (2012). Epigenetics: stress makes its molecular mark. Nature, 490(7419), 171-172.

[5] Hitchins, M. P., Wong, J. J., Suthers, G., Suter, C. M., Martin, D. I., Hawkins, N. J., & Ward, R. L. (2007). Inheritance of a cancer-associated MLH1 germ-line epimutation. New England Journal of Medicine, 356(7), 697-705; Shukla, A., Bai, L., Yang, H., Doran, A., Hu, Y., Geiger, T., … & Hunter, K. W. (2015). Integrating SNPs, epigenetics and transcriptomics to better understand the inherited predisposition to breast cancer metastasis. Cancer Research, 75(15 Supplement), 4138-4138; Sloane MA, Nunez AC, Packham D, et al. (2015). Mosaic Epigenetic Inheritance as a Cause of Early-Onset Colorectal Cancer. JAMA Oncol. 1(7):953-957. doi:10.1001/jamaoncol.2015.1484.

[6] Drake, A. J., & Walker, B. R. (2004). The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. Journal of Endocrinology, 180(1), 1-16; Kaati, G., Bygren, L. O., & Edvinsson, S. (2002). Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. European Journal of Human Genetics, 10(11), 682-688; Low, F. M., Gluckman, P. D., & Hanson, M. A. (2011). Developmental plasticity and epigenetic mechanisms underpinning metabolic and cardiovascular diseases. Epigenomics, 3(3), 279-294; Ordovás, J. M., & Smith, C. E. (2010). Epigenetics and cardiovascular disease. Nature Reviews Cardiology, 7(9), 510-519.

[7] Jimenez-Chillaron, J. C., Isganaitis, E., Charalambous, M., Gesta, S., Pentinat-Pelegrin, T., Faucette, R. R., … & Patti, M. E. (2009). Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes, 58(2), 460-468; Wu, Q., & Suzuki, M. (2006). Parental obesity and overweight affect the body‐fat accumulation in the offspring: the possible effect of a high‐fat diet through epigenetic inheritance. Obesity reviews, 7(2), 201-208.

[8] Dempster, E. L., Pidsley, R., Schalkwyk, L. C., Owens, S., Georgiades, A., Kane, F., … & Mill, J. (2011). Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Human molecular genetics, ddr416; Dong, E., Dzitoyeva, S. G., Matrisciano, F., Tueting, P., Grayson, D. R., & Guidotti, A. (2015). Brain-Derived Neurotrophic Factor Epigenetic Modifications Associated with Schizophrenia-like Phenotype Induced by Prenatal Stress in Mice. Biological psychiatry, 77(6), 589-596; Perrin, M. C., Brown, A. S., & Malaspina, D. (2007). Aberrant epigenetic regulation could explain the relationship of paternal age to schizophrenia. Schizophrenia bulletin, 33(6), 1270-1273

[9] Miyake, K., Hirasawa, T., Koide, T., & Kubota, T. (2012). Epigenetics in autism and other neurodevelopmental diseases. In Neurodegenerative diseases (pp. 91-98). Springer US; Nagarajan, R., Hogart, A., Gwye, Y., Martin, M. R., & LaSalle, J. M. (2006). Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics, 1(4), 172-182; Schanen, N. C. (2006). Epigenetics of autism spectrum disorders. Human molecular genetics, 15(suppl 2), R138-R150.

[10] Einstein A, Podolsky B, Rosen N; Podolsky; Rosen (1935). “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”. Phys. Rev. 47 (10): 777–780.

The Political Implications of Epigenetics: Emerging Narratives and Ideologies

Robison, Shea K. “The political implications of epigenetics Emerging narratives and ideologies.” Politics & Life Sciences 35, no. 2 (2016): 30-53.

Copyright Cambridge University Press. Reprinted with permission.

Link to full text: The political implications of epigenetics


Background. Epigenetics, which is just beginning to attract public attention and policy discussion, challenges conventional understanding of gene-environment interaction and intergenerational inheritance and perhaps much more besides.

Question. Does epigenetics challenge modern political ideologies?

Methods. I analyzed the narratives of obesity and epigenetics recently published in the more liberal New York Times and the more conservative Wall Street Journal. For the years 2010 through 2014, 50 articles on obesity and 29 articles on epigenetics were identified, and elements in their causal narratives were quantitatively analyzed using a well-described narrative policy framework.

Findings. The narratives on obesity aligned with the two newspapers’ reputed ideologies. However, the narratives on epigenetics aligned with neither ideology but freely mixed liberal and conservative elements.

Discussion. This small study may serve as a starting point for broader studies of epigenetics as it comes to affect political ideologies and, in turn, public policies. The narrative mix reported here could yet prove vulnerable to ideological capture, or, more optimistically, could portend the emergence of a “third-way” narrative using epigenetics to question atomistic individualism and allowing for less divisiveness in public-health domains such as obesity.


At present, the study of epigenetics is not yet on the radar of most policy makers. This article helps initiate the eventual policy discussion around epigenetics by identifying the emerging narratives of epigenetics–that is, the causal stories that are constructed from the science of epigenetics. In particular, this article assesses the reporting on epigenetics in two ideologically distinct news sources, the New York Times and the Wall Street Journal, to examine the effects of ideology on the emerging narratives of epigenetics and the potential effects of epigenetics on ideology.

More specifically, I determine whether reporting on epigenetics displays specific patterns or differences related to the ideological bent of the source of a particular narrative. In addition to providing a starting point for discussing the narratives of epigenetics, this analysis provides a first look at the potential ideological uses of epigenetics. Thus, this article establishes a useful baseline against which we can compare the policy narratives of epigenetics that will emerge as scientific debates about epigenetics cross over into public awareness and political discourse.

Epigenetics in politics and policy

If the scientific challenges of epigenetics are great, the political challenges are perhaps even greater. These political challenges come in a couple of different forms. First, the scientific identification of epigenetic causes of health effects has potential consequences for public health policies across many different domains. For this reason, policy analysts, policy makers, and others concerned with public policy should pay considerable attention to epigenetics.

Second, epigenetics-related public policy debates will involve profound aspects of political ideologies. As I will demonstrate, the identifications of novel causes and effects being realized in epigenetics research substantially complicates the foundational assumptions around which so much of our contemporary politics are organized, such as what defines an individual and how humans relate to their environment. In this way, the emergence of the science of epigenetics has the potential to force a fundamental reconfiguration of our politics to an extent not yet seen by the emergence of any other science, save perhaps the introduction of Darwinian evolution in the mid-19th century and the emergence of the modern science of genetics itself in the 1930s. As such, epigenetics could end up having more of an impact in politics than in science.

The true political implications of epigenetics

Although the main implications of epigenetics for policy stem from its complications of the conventional self-versus-environment dichotomies that characterize liberal-versus-conservative positions in contemporary policy domains such as obesity, epigenetics also has the potential to upend fundamental assumptions about human nature that have been the basis of prevailing conservative and liberal Western worldviews for at least the last 200 years. Specifically, the science of epigenetics introduces novel information about our relations with each other and with our environments that profoundly challenges the foundational modern Western concept of atomistic individualism, in which each person is regarded as a distinct and autonomous entity, ultimately separate from other people and from the environment.

This concept, which is espoused in Cartesianism, Lockeanism, Kantianism, and other philosophies, simply does not reflect the interconnectedness of humans with each other and with their environments, which may even span multiple generations, that is being revealed by the science of epigenetics. To the contrary, epigenetics shows the self, at least on a biological level, to be an inherently relational concept which is constituted through interaction with other people and the environment.

Even within the Western tradition, there are alternative philosophical frameworks that are not built upon an ontological commitment to atomistic individualism. For example, the ethics and political theory developed by the 17th-century Dutch philosopher Benedict Spinoza are premised upon a concept of the self as ultimately relational. At the same time, Spinoza’s system is also a product of the same intellectual and cultural history that produced other modern Western political theories. As such, the philosophy of Spinoza provides a potential bridge between atomistic individualism and the relationality of many non-Western traditions.

The concluding paragraph of this article is not the place to begin to formulate this new politics. Although this article is meant to initiate a discussion about what such a politics could or should look like via its descriptions of the science and the narratives of epigenetics, and their implications for policy, I recognize that whether such an alternate perspective will or could ever emerge in the West is an open question. However, this article does suggest that the ideological bases of our conventional policies and politics as currently conceived are ill-equipped to deal with the descriptions of our biological relationships with each other and with our environments now emerging from the science of epigenetics.

Link to full text: The political implications of epigenetics

Genetics and Epigenetics Come Home from the War

Excerpt from my forthcoming book Epigenetics and Public Policy The Tangled Web of Science and Politics to be released February 2018 by Praeger

As discussed before, prior to World War II there were substantial geographical differences in the approach to and the understanding of genetics: There was the more European emphasis on embryology and on the processes of biological development which focused on the environment of the genes, in contrast to the emerging American focus on the genes as ultimately controlling development and heredity. These were the two main currents of biology that Waddington, with his feet planted firmly in both streams, attempted to combine through his postulation of the epigenotype and epigenetics. Eventually, though, the American-led emphasis on molecular genetics carried the day to become the sine qua non of biology in the West, relegating embryology and development to secondary status.

This outcome is usually portrayed as the product of the inevitable and impartial progress of science, but the material effects of the Second World War and its aftermath on the particular trajectory of the science of genetics are rarely considered. When these factors are taken into account, the inevitability or incontestability of this increasingly reductive focus of genetic research—including the decades-long exclusion of epigenetic mechanisms—are brought into question.

Other voices, other rooms

For example, the development of the science of genetics in France after World War II initially followed a substantially different path than in America.[1] Although the French genetics research program eventually merged into the international mainstream of molecular genetics by the mid-1960s—in part for the reasons to be discussed in a subsequent section—this initial development of a distinct and yet still fruitful focus provides a counter-balance to the conventional story of the inevitability of the gene-centric focus of molecular genetics as we now know it.

Genetics in France, as lead by the Russo-French geneticist Boris Ephrussi, was much more focused on the combination of embryology and genetics. Ephrussi, who was appointed to the first chair of genetics in France at the University of Paris after WW II, had, like Waddington, been initially trained in embryology but had also studied genetics in America under T.H. Morgan. After the war, Ephrussi discovered the non-Mendelian inheritance of deep physiological changes in cells, and other evidence of the significance of the cytoplasm in heredity.[2] Given these empirical results, Ephrussi pushed for the cytoplasm to be a focus of French genetics specifically against the American preoccupation with the nuclear gene.[3] Ephrussi  famously expressed his dissatisfaction with the distinctly Americanized position that heredity was exclusively controlled by the genes writing that “we cannot determine the truth of a hypothesis by counting the number of people who believe it.”[4]

Regardless of the efforts of Ephrussi and others to maintain a distinct concentration for genetics research in France, they were ultimately unable to resist the rising wave of the focus on molecular genetics emanating from America—coincident with the solidification of U.S. geopolitical hegemony.

Follow the money

In this context, especially given the dramatic ascension to superpower status of the United States following World War II, the distribution of the funding for scientific research in the postwar bipolar world constitutes a significant and often overlooked factor in the development of genetics and the virtual exclusion of epigenetics.

Until the first World War, most scientific projects around the world were funded by wealthy patrons, private benefactors, or industry, with only modest support from governments. Government support for science increased somewhat through the 1800s but never constituted much of an influence. After the first World War, government funding of science increased but was still not a significant amount, and even private sources of funding support for science had dwindled (for example, in 1931, total grants from American foundations amounted to just over $50 million, by 1934 it was $34 million, and by 1940 it was only around $40 million [5]).

With World War II, though, all of this changed dramatically—especially in the United States. Vannevar Bush, an engineer and vice-president at MIT, with a one page proposal and a fifteen minute meeting with President Roosevelt in June of 1940, was able to secure the funding for the National Defense Research Committee (NDRC) to coordinate scientific research on “the problems underlying the development, production, and use of mechanisms and devices of warfare.”[6] The NDRC was then superseded a year later by the Office of Scientific Research and Development (OSRD), also overseen by Bush, which by 1946 was allocated in excess of $536 million from the Emergency Fund of the President for projects of all kinds, including the Manhattan project to develop the first atomic weapons.[7]

In the waning days of WW II, Bush submitted a report to President Roosevelt called “Science: The Endless Frontier” in which Bush proposed the continued funding of science by the government at wartime levels, but without the shackles of military utility.[8] In particular, Bush identified what he called “basic research,” or “research in the purest realms of science” without concern for direct application, as the proper focus of the government funding of science. “Scientific progress on a broad front,” Bush wrote, “results from the free play of free intellects, working on subjects of their own choice, in the manner dictated by their curiosity for exploration of the unknown.”[9] However, Bush also explicitly painted this scientific superiority in the light of maintaining national security, as the best defense against aggression. Congress eventually agreed with Bush, and created the National Science Foundation according to his recommendation.

As detailed extensively by Daniel Greenberg, Bush’s insistence on federal patronage for the definition and advancement of scientific knowledge in the United States was a dramatic departure from previous funding practices, which eventually came to characterize federal science policy after World War II—bringing with it substantial political and ethical concerns.[10] The scale of the government funding of science only escalated after the onset of the Cold War, quickly becoming the new norm as universities competed for this funding to fuel “the steepest expansion of higher education in American history (if not the whole world).”[11] For example, by 1953 the federal funding in the U.S. for ‘basic’ research alone was over $256 million, and federal research contracts constituted more than 90% of the annual operating budget of MIT.

The sheer magnitude of the funding available for science in the U.S. at this historical moment after World War II and at the beginning of the Cold War is especially extreme when compared with the situation in Europe where, for example, as part of the Marshall Plan the U.S. was in the process of spending $12 billion ($120 billion in current value) to rebuild the infrastructures and economies of Europe. In other words, at this crucial historical moment in the development of the science of genetics, substantial financial resources for scientific work were readily available to those involved in promoting a distinctly molecular and atomistic focus for genetics. In contrast, those who were developing alternatives to this molecular focus in Europe not only had to conduct their work within demolished infrastructures being rebuilt with substantial material support from the U.S., but also had to appeal to external sources primarily from the U.S.—where molecular genetics was the emerging consensus—for much of the funding for their scientific work.[12]

The road not taken

Again, in the context of the development of the orthodox science of genetics, which practically excluded epigenetics for so long, the question of who had access to money and resources for research and who did not is very much a live issue. While the gene-centric focus of molecular genetics is now often perceived as the obvious and inevitable victor over other potential alternatives, these financial factors, combined with the geographical, political, and ideological factors discussed before, instead describe a drastically lopsided playing field.

All this is not to say that mainstream genetics is therefore invalid, to be replaced by epigenetics (if anything, I hope this history has demonstrated just how inseparable are genetics and contemporary epigenetics). Rather, this is to suggest that the ascendance of the molecular emphasis of genetics that developed from out of this historical moment—including the decades-long omission of epigenetics—was contingent on many other factors beyond purely scientific considerations which influenced the science and the research of this time. Had it not been for this particular convergence of factors, the science of genetics which resulted after World War II may have been significantly different, even potentially incorporating epigenetic mechanisms into its basic theoretical frameworks sixty years or more before the recent explosion of interest in epigenetics. If epigenetics had been incorporated into the orthodoxy of genetics at this earlier time, as it very well could have been given other circumstances, then not only would it not be as controversial as it is now, but we would also already be sixty years beyond the advances in our understanding of gene function which we are just now gaining from the recent work being done in epigenetics.


[1] Burian, R. M., Gayon, J., & Zallen, D. (1988). The singular fate of genetics in the history of French biology, 1900–1940. Journal of the History of Biology21(3), 357-402.

Burian, R. M., & Gayon, J. (1999). The French school of genetics: From physiological and population genetics to regulatory molecular genetics. Annual Review of Genetics33(1), 313-349.

Gayon, J., & Burian, R. M. (2004). Timeline: National traditions and the emergence of genetics: the French example. Nature reviews. Genetics5(2), 150.

[2] Ephrussi B. (1953). Nucleo-cytoplasmic relations in micro-organisms: their bearing on cell heredity and differentiation. Oxford.

[3] Sapp, Jan. (1986). Inside the Cell: Genetic Methodology and the Case of the Cytoplasm. In The politics and rhetoric of scientific method: Historical studies (Vol. 4), Schuster, J. and Yeo, R.R. eds. Springer Science & Business Media.

[4] Ephrussi (1953); This line by Ephrussi was actually a paraphrase of an earlier comment by the philosopher of science J. H. Woodger—a close friend of Waddington and also a member of the Theoretical Biology Club at Cambridge—who wrote elsewhere that “Admittedly, some hypotheses have become so well established that no one doubts them. But this does not mean that they are known to be true. We cannot determine the truth of a hypothesis by counting the number of people who believe it, and a hypothesis does not cease to be a hypothesis when a lot of people believe it.” [Woodger, J. H. (1948). “Observations on the present state of embryology”. Symposium of the Society for Experimental Biology. 2 (Growth in Relation to Differentiation and Morphogenesis].

[5] Neal, H.A., Smith, T.L. and McCormick, J.B., 2008. Beyond Sputnik: US science policy in the 21st century. Ann Arbor, Michigan: University of Michigan Press.

[6] James Phinney Baxter III, Scientists Against Time (Boston: Little, Brown & Co., 1946), p. 14; draft of order attached to undated, unsigned memorandum in OSRD Box 212.

[7] Stewart, Irvin (1948). Organizing Scientific Research for War: The Administrative History of the Office of Scientific Research and Development. Boston: Little, Brown and Company

[8] Bush, V., 1945. Science: The Endless Frontier: a Report to the President on a Program for Postwar Scientific Research, July 1945. United States Government Printing Office.

[9] Bush (1945).

[10] Greenberg, Daniel S. (2001). Science, Money, and Politics: Political Triumph and Ethical Erosion. Chicago: University of Chicago Press.

[11] Kaiser, David. (2011). The Search for Clean Cash. Nature 472 (7341), pp. 30–31.

[12] Strasser, B. (2003). The transformation of the biological sciences in post‐war Europe. EMBO reports4(6), 540-543.

More About Waddington: Socialism, Science, and Epigenetics

Excerpt from my forthcoming book Epigenetics and Public Policy The Tangled Web of Science and Politics to be released February 2018 by Praeger

The connections between the deep-seeded philosophical inclinations of C.H. Waddington and his eventual ‘discovery’ of epigenetics have been detailed elsewhere. Given these connections between his philosophy and his scientific work, it should be little surprise that there are similar connections between his politics and his science. These connections not only provide additional context for his scientific work, they also help to explain the icy reception of epigenetics when he first proposed it in the 1940s, given the nature of Waddington’s political inclinations and the geopolitical circumstances of the time. These connections in turn help to explain why epigenetics has only recently emerged within the last couple of decades, sixty years since Waddington initially proposed epigenetics as an intermediary layer between genes and the environment.

Science and socialism

Gary Werskey, in his extensive work on the “scientific socialists” of the 1930s,[1] describes the intertwined lives and careers of five prominent British scientists—J.D. Bernal, J.B.S. Haldane, Lancelot Hogben, Hyman Levy, and Joseph Needham—who openly professed both a socialist politics and a socialist conception of science, and four of whom were formal members of the Communist Party of Great Britain. Although Waddington is not one of Werskey’s subjects, he worked with Haldane and published a paper with him. He was close lifelong friends with Bernal, a pioneer in X-ray crystallography which played such an important role in the discovery of the double helix of DNA, and Needham, a specialist in embryology and morphogenesis as well as a respected sinologist, through an informal ‘club’ the three had founded while they were in school together in Cambridge in 1931.

Werskey concludes that the politics of these men did not directly influence their science, primarily because they worked in the mainstream of the science of their time. I suggest instead that while these men did make substantial contributions to the mainstream science of their time, there were also identifiable influences of their politics on their scientific work, and that these political influences are found in their common approach to biology. This convergence of politics, ideology, and biology—especially given how the geopolitical history of the world was to soon unfold—is also pertinent to the development of Waddington’s conception of epigenetics in the 1940s, and to the lack of acceptance of epigenetics until relatively recent. In the same way, this convergence of biology and ideology is equally pertinent to the development of the science of genetics as we now know it, which until the last decade or so more or less excluded epigenetics from serious consideration.

Waddington and the Theoretical Biology Club

This ‘club’ that Bernal, Needham, and Waddington (along with the philosopher of biology Joseph Woodger and the mathematician and biochemical theorist Dorothy Wrinch) formed while at Cambridge was called the Theoretical Biology Club. As the name denotes, the club was organized around discussions of both the philosophy and the science of biology that was just then emerging at that time. In particular, the primary theme or topic of this club was the discussion of the concept of organicism in biology. Organicism, which is related to the philosophy of organism of Whitehead described before, is the idea that wholes are greater than the sum of their parts, that “the properties of each part are dependent upon the context of the part within the whole in which they operate,” and that wholes exert some regulative control over their parts.[2]

Coincidentally or not, organicism applied to biology was championed by J.B.S. Haldane’s father, J.S. Haldane, an internationally respected physiologist also working at Cambridge at this time.[3] As a working natural scientist, the elder Haldane conceived of organicism through his work on the regulative processes of the body, and respiration in particular, in response to changes in the environment.[4] Haldane the father also saw organicism in biology as a much-needed middle way between the unscientific vitalism of Lamarckism and the overly reductionist and dualistic conception of biology which was then emerging in concert with genetics.[5] At the same time, as historian Peter Bowler observes, the organicism of the elder Haldane also coincided with his support for a social philosophy which advocated a significant role for the state in coordinating the actions of individuals to secure the greater good, in contrast to the prevailing liberal philosophy of extreme individualism which Haldane saw as leading to selfishness and expressive of the more avaricious aspects of humankind.[6]

Likewise, in addition to organicism in biology, another major topic of conversation of the Theoretical Biology Club was their shared socialist and Marxist beliefs, which they saw as inextricably linked with their views of biology. These ideological beliefs were not just sophomoric exuberances, though, but were deeply held sentiments which were maintained by all into their subsequent work as well-regarded scientists. For example, Brenda Swann and Francis Aprahamian detail a number of ways in which the dialectical materialism of Marx and Engels fit the assumptions of the experimental work of these men as mature scientists, including Waddington.[7] In particular, Swann and Aprahamian identify Marxism’s historical perspective and its concern with transformation over time, as well as its “vision of the totality of the phenomena in nature that allowed both for its unity and its limitless diversity…that was not at the same time mechanically reductionist” as its likely appeal to these “adventurous young talents…that refused to accept disciplinary limitations and boundaries.”[8]

J.B.S. Haldane

For example, J.B.S. Haldane—who was not a member of the Theoretical Biology Club, but was well acquainted with all who were—was a prominent figure in the emerging mathematical theories of population genetics, and was also a card-carrying Marxist.

At the time, the mathematical formalisms of population genetics treated genes as entirely independent units, with the assumption that most traits were rigidly determined by genetic inheritance. This emphasis on genes was also coupled with the belief that genetic change only happened rarely, via random mutations, and that for changes in genes to distribute through a population required geological time scales (from the background assumptions of uniformitarianism and gradualism carried over from geology, as described elsewhere). This strict emphasis on genes as atomistic sources of control of traits and as insulated from their environments seems to share little in common with either an organicist approach to biology or a collectivist ideology like Marxism, thus precluding a connection between Haldane’s politics and his scientific work in population genetics.

However, in this context it is especially interesting that one of the main emphases of Haldane’s mathematical work was to show that selection coefficients could be larger than other population geneticists generally assumed, which allowed for a much more rapid evolution than was imagined possible by population geneticists before Haldane.[9]  In particular, Haldane’s work attributed much more of a link to the environment than was allowed by most other population geneticists. For example, in his paper on the famous case of the moths of Manchester,[10] Haldane demonstrated mathematically how the evolution from disproportionate numbers of speckled moths to disproportionate numbers of black moths within 50 years was plausible given the changes in environmental conditions around the industrializing city of Manchester, which was a practical impossibility given the then-accepted rates of genetic variation.[11] This link between environmental change and a commensurately rapid change in the biological constitution of organisms was in a way a confirmation of sorts of the Marxian assertion of the connection between humans and their environments, particularly in the context of industrialization, as described by Friedrich Engels, even though it was also well within the mainstream science of the time.

The science and ideology of Waddington

While it would be imprecise to label Waddington a Marxist per se (e.g., given that he once asserted that the organicist philosophy of Whitehead had actually superseded Marx’s dialectical materialism “with a fuller view of nature”[12]), it is clear that many of his closest associates were unabashed Marxists, and that Waddington had ideological inclinations which leaned in that direction as well.[13] Given the connections between social reform movements and open biologies described elsewhere, and given Waddington’s emphasis on the interactions of genes with their environments, it is perhaps not surprising that Waddington also advocated for socialist politics.

That said, these connections between ideological inclinations towards socialism and organicism in science during this era were not unique to Waddington and his close group of friends. Val Dusek, in his own account of the emergence of the anti-mechanistic, anti-reductionist biology and physics around this time, identifies many of the prominent scientists who embraced this more holistic view and who also proclaimed themselves as Marxists, and discusses the ways in which their ideological inclinations were manifest in their scientific work.[14]

Notably, the significance of these connections between politics and science were not lost on the scientists themselves. In his later life Waddington himself remarked on what he called the practical consequences of metaphysical beliefs on scientists’ work, observing from his own experience that “a scientist’s metaphysical beliefs are not mere epiphenomena, but have a definite and ascertainable influence on the work he produces.”[15]

This open acknowledgement of the connection between ideological beliefs and scientific work makes many scientists today uncomfortable, as if it should discredit the work of overt socialists and Marxists like Waddington, Haldane, and Bernal because of the level of the influence of their political beliefs on their work. However, given the caliber of these scientists and of their scientific work—some of which now constitutes the bedrock of contemporary genetics—this assumption that the influence of ideology automatically invalidates scientific work does not hold water.

Likewise, to assume that extra-scientific beliefs like political ideology only influenced the work of these few socialist scientists working in 1930s and 1940s who openly acknowledged this connection, while the work of other non-socialist scientists who did not acknowledge such a connection is somehow exempt from such influences is not supported by the political and scientific history of the science of genetics. As discussed in previous chapters, political ideology has been a pervasive influence on the development of the science of biology throughout its history, including on many of those innovations which are now accepted as its core orthodoxy. As this history shows again and again, claims about the ideological neutrality of scientific programs are usually at best unintentionally myopic, or at worst hubristic—and are themselves likely the manifestations of a particular ideology which is taken as self-evidently true. Again, this influence of ideology does not necessarily render such scientific claims unscientific—otherwise there would have been no development of science over the course of this history—but it does mean that ideologies must also be a consideration in the evaluation of scientific claims.

As such, in the final section of this book on the public policy implications of epigenetics, these connections between ideologies and science and policies will be seen to still be live concerns in regards to contemporary epigenetics—although now in our contemporary political contexts and not necessarily as a contest of socialism contra capitalism and democracy, as in the geopolitical context of World War II and the Cold War, which is the subject of the next chapter.

[1] Werskey, G., 1978. The Visible College: The Collective Biography of British Scientific Socialists of 1930s. New York: Holt, Rinehart, and Winston.

[2] Gilbert, S. F., & Sarkar, S. (2000). Embracing complexity: organicism for the 21st century. Developmental dynamics219(1), 1-9.

Bedau, M.A. and Cleland, C.E., 2010. The nature of life: classical and contemporary perspectives from philosophy and science. Cambridge University Press, p. 95.

[3] Peterson, E. (2010). Finding mind, form, organism, and person in a reductionist age: The challenge of Gregory Bateson and CH Waddington to biological and anthropological orthodoxy, 1924–1980 (Doctoral dissertation). Retrieved from CurateND. (https://curate.nd.edu/downloads/js956d5968k), pp. 39-41.

[4] Haldane the elder is also famous for his penchant for conducting his respiratory experiments upon himself, and for inventing the first gas mask from his firsthand observations of poison gas attacks during World War I.

[5] Ibid.

[6] Bowler, P.J., 2010. Reconciling science and religion: The debate in early-twentieth-century Britain. University of Chicago Press, p. 169.

[7] Swann, B., & Aprahamian, F. (Eds.). (1999). JD Bernal: a life in science and politics. Verso, pp. xvi-xviii.

[8] Ibid., p. xviii.

[9] Crow, J. F. (1987). Population genetics history: a personal view. Annual review of genetics21(1), pp. 5-7.

[10] Haldane JBS. A mathematical theory of natural and artificial selection. Trans Cambridge Philos Soc. 1924;23:19–41.

[11] Larson, E. J. (2004). Evolution: the remarkable history of a scientific theory (Vol. 17). Random House Digital, Inc., pp. 218-224.

[12] Gilbert, S. F. (1991). Induction and the origins of developmental genetics. In A conceptual history of modern embryology (pp. 181-206). Springer US.

[13] Bowler, P. J. (2010). Reconciling science and religion: The debate in early-twentieth-century Britain. University of- Chicago Press, pp. 174-175

Waddington, C. H. (1942). Science and Ethics: An Essay. George Allen And Unwin Ltd.; London.

[14] Dusek, V. (1999). The holistic inspirations of physics: The underground history of electromagnetic theory. Rutgers University Press.

[15] Waddington, C.H. 2009. The Practical Consequences of Metaphysical Beliefs on a Biologist’s Work: an Autobiographical Note. In C.H. Waddington ed. Sketching Theoretical Biology: Toward a Theoretical Biology (Vol. 2). Transaction Publishers.

A Tale of Two Fields: Epigenetics and Biology Between the Wars

Excerpt from my forthcoming book Epigenetics and Public Policy The Tangled Web of Science and Politics to be released February 2018 by Praeger

One of the roots of the decades-long delay in the acceptance of epigenetics is found in the divergence of emphasis in biology between the emerging science of genetics and the more established field of embryology in the 1930s and 1940s. As will be discussed, this divergence had material, methodological, and geographical aspects. My contention is that this divergence also had substantial political and ideological aspects which were to become even more apparent in the onset of the Second World War, as these ostensible methodological differences also mirrored these impending political fractures.

This schism between embryology and genetics also complicates the conventional picture of the development of science as a logical, inevitable progression, and of the differences between fields as merely the result of a functional division of labor. Instead, at least in this case, this divergence between embryology and genetics appears to have occurred both for scientific reasons, but also as “a struggle for power and authority.”[1]

These dynamics are not exclusive to genetics but seem to be characteristic of science itself. For example, the sociologist Pierre Bordieu[2] and the historian Steven L. Goldman,[3] in their own analyses of the history of science, identify how what often becomes accepted as science is not obviously and necessarily more valid than what is deemed unscientific; instead, legitimate science is often determined just as much by “those who manage to impose the definition of science [as] having, being and doing what they have, are or do,”[4] which outcomes then become justified by assumption after the fact.

In other words, often there are no clear natural distinctions between different possible interpretations of the same natural phenomena, or no objective ways that nature can be ‘carved at its joints,’ and so what come to be the defining assumptions of a science have to be decided by other means. For example, in this case of the schism between genetics and embryology, it is fair to say that neither side was ‘wrong’ as such about the phenomena in question. What was primarily different was in the focus of each, or where the locus of causation was being placed. A legitimate science of biology built upon the work being done in embryology at this time, with genetics as a subsidiary component, is as conceivable as the genetics with embryology as a subsidiary component which actually did develop. In fact, the recent emergence of contemporary epigenetics, in which both these emphases are combined, indicates what such a science would have looked like. The actual result of this schism in biology, though, was a science of biology with the gene as the primary—and practically exclusive—cause.

All this is not to suggest that the science of genetics as it has developed since this time is therefore somehow not legitimate science. It has been an undoubtedly successful scientific enterprise by any standard. This is rather to say that the gene-centric focus of molecular biology is not the only direction a legitimate science of biology could have taken at this particular juncture, and that there were other equally viable alternative routes. That genetics developed as it did, though, is due to both scientific and political factors, although again this observation should not be construed as a condemnation of genetics.

Bricks in their walls

The fields of genetics and embryology had begun to diverge noticeably from each other by the mid-1920s, and this split became definitive by the 1940s—not that embryology disappeared, but that it was relegated or subordinated to genetics. According to the Nobel-prize winning geneticist T.H. Morgan, “an embryologist who inadvertently founded the gene theory,”[5] in his 1934 book Embryology and Genetics, this split was ostensibly along the lines of focus: Genetics and geneticists focused on the transmission of hereditary traits, while embryology and embryologists focused on the expression of those traits.[6]

However, while this may now seem an inevitable division, why such a split was deemed necessary in the first place, and why it should be along the lines of genetics versus embryology, is not so straightforward. This ambiguity is one indication that extra-scientific factors also played a role in this schism, which in turn influenced the timing of the rejection and the eventual begrudging acceptance of epigenetics, which takes more of an embryological approach. For this reason, the underlying social and political currents of this split are of particular relevance to the focus of this book on the policy implications of epigenetics to be discussed in the final section, which are a product of the novelty of epigenetic explanations in the accepted science of genetics.

Notably, this split was facilitated in large part by the work and the influence of Morgan himself, who set the stage for a distinctly American genetics in the 1920s—which would go on to become the prevailing conception of genetics and biology after World War II coincident with the zenith of American global hegemony. Morgan accomplished this division primarily by promoting the nuclear envelope, or the membrane which surrounds the genetic material in cells, as the primary conceptual and disciplinary boundary between genetics and embryology: what occurred within the envelope was the domain of genetics and what occurred outside was the domain of embryology. However, as the historian of biology Jan Sapp observes, the priority Morgan gave to this membrane, and to the disciplinary distinctions which resulted, were not “an intrinsic logical necessity of scientific thought,” but rather “depended directly on both the technical capacity and the institutional power of the discipline within which they were produced.” [7]

In particular, Morgan’s physiological distinction also highlighted an important geographical difference as well. Most biologists in Europe at this time did not recognize the priority of the physical boundary of the nuclear envelope as asserted by Morgan, but rather considered it to be just one component of the physiology of genes and the cell and the organism. Peter Bowler in his own history of evolutionary thought also notes this key geographical and cultural difference, observing that in Europe “genetics developed in a much less dogmatic form,” with much more interaction between these different subfields, and much more openness even to “non-Darwinian mechanisms of evolution” than in America in particular.[8]

The European approach to biology, in particular as championed by German scientists, asserted that the cytoplasm—or the non-genetic material within a cell not including the nucleus—played an important role in gene function, especially in providing the building material for the chromosomes and the genes themselves. In this way the external environment and the properties of the cells were seen to have a substantial influence on the functions of the genes within the cells. As such, both development and heredity were implicated in this more holistic focus, such that biologists in Europe did not have to confine themselves to studying either inheritance or development, as evidenced by the career of Waddington described elsewhere.

Morgan himself, as an embryologist, was declaring as late as 1910 that “We have come to look upon the problem of heredity as identical to the problem of development,”[9] which was well within this more European and German approach to genes and development. However, by 1926 Morgan the geneticist was asserting that cell composition and structure could be ignored in relation to the genes, such that the explanations of both inheritance and development could be found exclusively within the genes.[10]

The ability of this gene-centered faction of biology to resist absorption by the more established field of embryology constituted what the historian Scott Gilbert identifies as the “last chapter” in the emergence of a particularly American biology, which was to go on to become the prevailing gene-centered conception of biology more generally following World War II. “When had American biology finished ‘emerging’?” Gilbert asks, “I suspect that stage was reached when it had successfully resisted the last attempts to integrate it into European-dominated traditions of inquiry.”[11]

Thus, beyond the legitimate scientific rationales for this emphasis on the nuclear envelope which in part fomented the schism between embryology and genetics, some of the impetus behind this division of fields also stemmed from geneticists asserting their disciplinary independence from embryology, and from the desire of the American school of genetics in particular to assert its independence from the “European-dominated traditions of inquiry” which prioritized embryology and development over a near-exclusive focus on the genes.[12]

Again, per the guiding model of this project, that the sides in these disciplinary quarrels in biology coincided with the eventual sides taken in the Second World War, and that genetics ultimately emerged as the hegemonic victor in biology at the same time the U.S. emerged as the global hegemon after the war, is not merely coincidental. One of the effects of this distinctly Americanized focus on genes which emerged after the Second World War, and which was further solidified during the Cold War, was the antipathy towards epigenetic explanations like those proposed by C.H. Waddington in the 1940s which integrated genetics with embryology. This longstanding antipathy towards epigenenetics resulting in part from this disciplinary divergence of genetics and embryology from before the war helps to explain the timing of the recent (re)emergence of contemporary epigenetics from within genetics. This long delay in the reintegration of epigenetic explanations into genetics in turn helps to explain the political challenges now presented by epigenetics, which are the focus of this book: If epigenetics had been incorporated into the edifice of modern genetics as it was being constructed through the 1940s-1960s—as it very well could have been, given other social and political circumstances—then epigenetics would not present the conceptual and interpretive issues that it does now.

This intra-disciplinary contest between genetics and embryology was just one field of battle in this clash of science, politics, and ideologies during the interwar years. There were many other arenas in which developments in science mirrored the conflicts between political ideologies leading up to both the Second World War and the subsequent Cold War. Describing the circumstances of this convergence of science and ideology on a global scale from before World War Two through the Cold War, and how they pertain to epigenetics, will be the focus of subsequent chapters.

[1] Sapp, J. (1983). The struggle for authority in the field of heredity, 1900–1932: New perspectives on the rise of genetics. Journal of the History of Biology16(3), 311-342.

[2] Bourdieu, P. (1999). The specificity of the scientific field and the social conditions of the progress of reason. Sociology of Science 14(6): 19-47.

[3] Goldman, S.L., 2006. Science wars: What scientists know and how they know it. Teaching Company.

[4] Bourdieu 1999, p. 24.

[5] Gilbert, S.F. (1991). Cellular politics: Ernest Everett Just, Richard B. Goldschmidt, and the attempt to reconcile embryology and genetics. In Rainger R, Benson KR, Maienschein J. (eds) The American Development of Biology. Philadelphia: University of Pennsylvania Press. Available at http://10e.devbio.com/article.php?id=26

[6] Morgan, Thomas Hunt. (1934). Embryology and Genetics. New York, NY: Columbia University Press.

[7] Sapp 1983.

[8] Bowler, Peter J. (2003). Evolution: the History of an Idea (3rd ed.). California: University of California Press.

[9] T. H. Morgan, “Chromosomes and Heredity,” American Naturalist, 1910, 44: 449-496.

[10] T. H. Morgan, “Genetics and the Physiology of Development,” Am. Nat., 1926, 60:459-515.

[11] Ibid.

[12] Gilbert, S.F. (1991). Cellular politics: Ernest Everett Just, Richard B. Goldschmidt, and the attempt to reconcile embryology and genetics. In Rainger R, Benson KR, Maienschein J. (eds) The American Development of Biology. Philadelphia: University of Pennsylvania Press, p. 311. (Available at http://10e.devbio.com/article.php?id=26)

Alfred Russel Wallace, Ideology, and Evolution

Excerpt from my forthcoming book Epigenetics and Public Policy The Tangled Web of Science and Politics to be released February 2018 by Praeger

One specific and particularly intriguing example of these differences in the content of the natural science of the 1800s due to social class and ideological inclination is the contrast in the description of natural selection by Alfred Russel Wallace with natural selection as described by Darwin.

Although largely unknown by most people outside of biology today, within biology Wallace is rightfully credited as both an independent co-discoverer of the theory of natural selection with Darwin and as providing the critical impetus for Darwin to finally publish his theory. That natural selection as described by Darwin has since assumed priority over that of Wallace is generally chalked up to minor but important theoretical differences and Darwin’s more complete elaboration of the concept in his book On the Origin of Species. I suggest, as do others,[1] that there are important differences between the two conceptions of natural selection. Further, I suggest that these theoretical differences are related to the social and political factors mentioned before, and that these social and political factors contributed as much to the eventual triumph of the Darwinian version as any claims of its enhanced correspondence with empirical facts.

For example, in contrast to the privileged station Darwin enjoyed in Victorian society, Wallace emerged from a working class background, was self-educated in Mechanic’s Institutes and ‘Halls of Science,’ which were set up for adult education by utopian Owenite societies,[2] and was also a committed socialist.[3] To wit, while Darwin emphasized selection at the level of individual organisms and the competitive aspect of evolution, which reflected the prevailing beliefs of his station as a proper Victorian, Wallace’s theory of natural selection emphasized environmental pressures on varieties or groups instead of just individuals, and cooperation instead of competition, both of which also reflected his strong socialist inclinations.[4] Thus, while there are striking similarities between the two versions of natural selection, there are some substantial differences as well, most of which break along the class and ideological lines described before. That the Darwinian version of selection eventually became the predominant interpretation is, according to the guiding model of this project, not merely a coincidence but also a function of its congruence with these prevailing social and political factors.

On the other hand

At the same time, though, all of this is not to say that there is always an exclusive one-to-one correspondence between an ideology and a specific understanding of biology—or that a belief in socialism necessarily requires an adherence to a Lamarckian understanding of biology, as was prevalent during the 1800s. For example, one noteworthy exception to the pattern of relationships described before—and one which merits much more scrutiny and commentary than I can give here—is that Wallace himself, contrary to expectations given his  socialist ideology, explicitly and consistently disavowed Lamarckian inheritance in his conception of natural selection to a greater degree than even Darwin.[5] Where Darwin explicitly included a role for Lamarckian use-disuse inheritance in evolution,[6] and later even proposed his hypothesis of pangenesis as a mechanism for such inheritance, Wallace was much more definitive in asserting that this kind of inheritance was unnecessary in natural selection.

Notably, as described in more detail elsewhere, the version of Darwinism which ultimately formed the foundation of modern genetics was ‘Neo-Darwinism,’ which is basically Darwinian natural selection scrubbed of any equivocation on the inheritance of acquired traits—which is actually more akin to Wallaceism. This theoretical difference suggests that relatively few modifications to Wallaceism would have been required to be congruent with genetics, as were required of Darwinism, such that the Modern Synthesis of genetics with natural selection could perhaps have emerged decades earlier if Wallace’s version of natural selection had been selected as the explanation of choice for natural selection. If Wallace’s version had been selected, though, given the differences just cited, the resulting theory of genetics would have been substantially different in many ways than the contemporary version of genetics as we now know it—including, perhaps, in the even earlier acceptance of epigenetics. This is an intriguing counterfactual which would be worth more exploration. That Wallace’s version of natural selection was not selected by the prevailing science of the time, though, also seems due at least in part to these social and political differences mentioned before, in addition to these differences in the scientific content.

Likewise, as will be shown in the next chapter, in the decades after Darwin many advocates of what would now be considered a distinctly conservative laissez faire ideology invoked a version of Lamarckism to justify economic and social policies, while progressives—particularly in America—actually turned to a reinterpreted Darwinian biology and the emerging science of genetics to explain and justify their politics and policies. This opposition between these Lamarckian ‘conservatives’ and these Darwinian ‘progressives’ constituted one of the important fundamental ideological oppositions of this era, and would shape the politics of the 20th century not only in America but on a global scale.

Per the guiding model of this project, what is consistent throughout all these examples is that in each case these interpretations of biology are made congruent with the ideology. In other words, even though these conservatives in the early 1900s were using Lamarckism while the progressives were using Darwinism—the exact opposite as in the 1800s—in each case the biology was interpreted in line with the dictates of the ideology, and vice versa. As such, these seeming counterexamples actually provide support for this notion of the necessary connection between social and political ideology and biological science. This ultimate congruence of biology with ideology is a particularly important point for the discussion of epigenetics and public policy in the final section of this book.

[1] Kutschera, U. (19 December 2003). “A comparative analysis of the Darwin–Wallace papers and the development of the concept of natural selection”. Theory in Biosciences122 (4): 343–59.

Glickman, S. E. (2009). Charles Darwin, Alfred Russel Wallace and the Evolution/Creation of the Human Mind. Gayana (Concepción)73, 32-41.

Gross, C. (2010). Alfred Russell Wallace and the evolution of the human mind. The Neuroscientist,16(5), 496-507.

Ruse, M. (2013). Charles Robert Darwin and Alfred Russel Wallace: their dispute over the units of selection. Theory in Biosciences132(4), 215-224.

[2] Harrison, J. (2009). Robert Owen and the Owenites in Britain and America: the quest for the new moral world. Taylor & Francis, p. 189.

[3] Green, J. (2012). Alfred Russel Wallace: Socialist and co-founder of evolutionary theoryLondon Progressive Journal. Retrieved 15 August 2017, from http://londonprogressivejournal.com/article/view/1049/alfred-russel-wallace-socialist-and-cofounder-of-evolutionary-theory.

Cervantez, S. R. (2016). Facts Are Stubborn Things: The Foundation of Alfred Russel Wallace’s Theories, 1823-1848 (Master’s thesis). Retrieved from http://digitalcommons.lsu.edu/gradschool_theses/1900.

[4] Jones, G. (2002). Alfred Russel Wallace, Robert Owen and the theory of natural selection. The British Journal for the History of Science35(01), 73-96.

[5] Wallace, A. R. (1889). Lamarck versus Weismann. Nature40(1043), 619-620.

Stack, D. (2003), The First Darwinian Left: Socialism and Darwinism, 1859-1914, London: New Clarion, p. 29.

[6] “Curiously few evolutionists have noted that, in addition to natural selection, Darwin admits use and disuse as an important evolutionary mechanism. In this he is perfectly clear. For instance,…on page 137 he says that the reduced size of the eyes in moles and other burrowing mammals is “probably due to gradual reduction from disuse, but aided perhaps by natural selection.” In the case of cave animals, when speaking of the loss of eyes he says, “I attribute their loss wholly to disuse” (p. 137). On page 455 he begins unequivocally, “At whatever period of life disuse or selection reduces an organ…” The importance he gives to use or disuse is indicated by the frequency with which he invokes this agent of evolution in the Origin. I find references on pages 11, 43, 134, 135, 136, 137, 447, 454, 455, 472, 479, and 480.” (Mayr, E. (1964/1859). “Introduction.” In Charles Darwin. On the Origin of Species: a Facsimile of the First Edition. Harvard University Press.)